Motores elétricos são componentes essenciais na grande maioria dos processos industriais. As diversas falhas nas máquinas de indução podem gerar consequências drásticas para um processo industrial. Os principais problemas estão relacionados ao aumento dos custos, piora nas condições do processo e de segurança e qualidade do produto final. Muitas destas falhas mostram-se progressivas. Neste trabalho, apresenta-se uma contribuição ao estudo de métodos de detecção de falhas em motores elétricos usando Máquinas de Vetores de Suporte (SVM), treinadas a partir de sinais de vibração obtidos experimentalmente. A metodologia desenvolvida é usada para classificar a excitação devido a falhas mecânicas e elétricas, além da condição normal de funcionamento, utilizando apenas um sensor de vibração. Através da seleção de parâmetros é possível reduzir o número de entradas capazes de representar os sinais utilizados para o treinamento das SVMs. A normalização proposta permitiu melhorar as taxas de acerto, quando se quer classificar falhas em diferentes níveis de severidade das que foram utilizadas para o treinamento. Os resultados mostraram que a metodologia apresentada pode ser adaptada para ser utilizada em aplicações práticas industriais e poderá ser no futuro uma saída viável para uma manutenção industrial eficiente e eficaz.
Veja mais: